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ABSTRACTWe show that a continuation approach to global optimization with global smoothing tech-niques can be used to obtain "-optimal solutions to distance geometry problems. We showthat determining an "-optimal solution is still an NP-hard problem when " is small. Adiscrete form of the Gaussian transform is proposed based on the Hermite form of Gaussianquadrature. We show that the modi�ed transform can be used whenever the transformedfunctions cannot be computed analytically. Our numerical results show that the discreteGauss transform can be used to obtain "-optimal solutions for general distance geometryproblems, and in particular, to determine the three-dimensional structure of protein frag-ments.



"-OPTIMAL SOLUTIONS TO DISTANCE GEOMETRY PROBLEMSVIA GLOBAL CONTINUATIONJorge J. Mor�e and Zhijun Wu1 IntroductionDistance geometry problems arise in the interpretation of NMR data and in the determi-nation of protein structures. For a general review of the distance geometry problem and itsrelationship to macromolecular conformation, see Crippen and Havel [4], Havel [10], Kuntz,Thomason, and Oshiro [17], and Br�unger and Nilges [1].A distance geometry problem is speci�ed by a subset S of all atom pairs and by thedistances �i;j between atoms i and j for (i; j) 2 S. A solution to the distance geometryproblem is a set of positions x1; : : : ; xm in IR3 such thatkxi � xjk = �i;j ; (i; j) 2 S: (1:1)Usually, S is sparse; in other words, only a small subset of distances is known.In practice, lower and upper bounds on the distances are speci�ed instead of their exactvalues. The distance geometry problem with lower and upper bounds is to �nd a set ofpositions x1; : : : ; xm such thatli;j � kxi � xjk � ui;j ; (i; j) 2 S; (1:2)where li;j and ui;j are lower and upper bounds on the distance constraints, respectively.The distance geometry problem (1.1) is computationally intractable in general becausethe restriction of the distance geometry problem to a one-dimensional space is equivalentto the set partition problem, which is known to be NP-complete [6]. Even stronger resultshave been obtained showing that k-dimensional distance geometry problems are stronglyNP-hard for all k � 1. For detailed proofs of these results, see Saxe [22] and Crippenand Havel [4]. One of the purposes of this paper is to study the complexity of solving thebounded distance geometry problem (1.2).The distance geometry problem, exact or bounded, can be formulated as a global op-timization problem. The objective function for the distance geometry problem is de�nedso that the constraints are satis�ed at a global minimizer of the problem. Special opti-mization techniques for this class of problems have been developed by Crippen and Havel[4], Havel [10], Hendrickson [11, 12], Glunt, Hayden, and Raydan [8, 9], and Mor�e and WuThis work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38 and by the Argonne Director's Individual Investigator Program.1



[19]. In particular, Mor�e and Wu [19] used global smoothing techniques and a continuationapproach to solve distance geometry problems.We extend the work of Mor�e and Wu [19], by showing that the global continuationapproach can also be used to obtain "-optimal solutions to the distance geometry problem,that is, a set of positions x1; : : : ; xm such that���kxi � xjk � �i;j ��� � "; (i; j) 2 S; (1:3)where " is a positive number. An "-optimal solution to the distance geometry problem isall that can be expected in practice, with the choice of " > 0 dictated by the accuracy inthe data. An "-optimal solution can also be useful when the exact solution does not existbecause of small errors in the data. The latter case can happen, for example, if the triangleinequality �i;j � �i;k + �k;jis violated for atoms fi; j; kg because of possible inconsistency in the experimental data.We study problem (1.3) as a special case of the bounded distance geometry problem(1.2). Our approach is to formulate problem (1.2) in terms of �nding the global minimumof the function f(x) = Xi;j2S hi;j(xi � xj); (1:4)where hi;j(x) = min2(kxk2 � l2i;jl2i;j ; 0)+ max2(kxk2 � u2i;ju2i;j ; 0) : (1:5)Clearly, x = fx1; : : : ; xmg solves problem (1.2) if and only if x is a global minimizer of fand f(x) = 0 (see Crippen and Havel [4]).In the continuation approach to global optimization an integral transformation is used tosmooth the original function into a function with fewer minimizers. An optimization algo-rithm is then used to trace the minimizers of the transformed functions back to the originalfunction. The smoothing transformation was �rst proposed and studied in the di�usionequation method for protein conformation by Scheraga and coworkers [21, 14, 15, 16, 23].Similar transformations have been used in the packet annealing algorithm of Shalloway[25, 24], and in the algorithms used by Coleman, Shalloway, and Wu [2, 3] for molecularconformation problems. Recent development of this approach from a mathematical andcomputational point of view can be found in Wu [28] and Mor�e and Wu [19]. A generalreview on this approach can also be found in Pardalos, Shalloway, and Xue [20].A major issue in applying the continuation method to problem (1.2) is that the potentialfunction (1.4) cannot be transformed analytically. While the function can certainly betransformed by using standard techniques for numerical integration, the cost of evaluatingthe transformed functions would be prohibitive. In this paper we introduce a Gauss-Hermite2



discrete transformation that can be evaluated at a reasonable cost and is applicable to awide class of functions, including (1.4).Our main concern is with the determination of "-optimal solutions to the exact distancegeometry problem, that is, vectors x 2 IRn that satisfy (1.3). Complexity issues are exam-ined in Section 2, where we show that determining "-optimal solutions to distance geometryproblems is an NP-hard problem when the atoms are restricted to IR.In Section 3 we de�ne the Gaussian transform and show how the Gaussian transform of(1.4) can be computed in terms of one-dimensional integrals. We then turn to computationalissues. In particular, Section 4 introduces the discrete Gauss-Hermite transform as anapproximation to the Gaussian transform, while Section 5 contains numerical results for acontinuation method based on this transformation. We consider a set of model distancegeometry problems, as well as the problem of determining the three-dimensional structureof a 63-atom protein fragment. Although preliminary, these results show that continuationalgorithms based on smoothing techniques can solve these global optimization problemswith a high degree of reliability.2 Approximate SolutionsThe solution of the exact distance geometry problem (1.1) may not exist because, for exam-ple, the constraints may not be consistent. Even if the constraints are consistent, a smallperturbation may render the constraints inconsistent. Since experimental data is not 100%accurate, it is quite reasonable to search for approximate solutions to the exact distancegeometry problem.In this section we analyze the complexity of determining the approximate solution tothe exact distance geometry problem (1.1). Any x 2 IRn that satis�es (1.3) is an "-optimalsolution to th exact distance geometry problem. We wish to show that if " is small, problem(1.3) is just as di�cult as the original exact distance geometry problem. We prove this resultby restricting all the atoms to lie in IR, and all distances to be positive integers. The resultcan be extended to higher dimensions, but we do not pursue these extensions.Given n positive integers ai 2 Z+, the standard set partition problem is to �nd apartition S1, S2 of f1; : : : ; ng such thatXi2S1 ai = Xi2S2 ai:This problem is one of the basic NP-hard problems (see Garey and Johnson [6]). Wenow generalize this problem by allowing approximate solutions. Given n positive integersai 2 Z+ and " > 0, the "-set partition problem is to �nd a partition S1("), S2(") of3



f1; : : : ; ng, and numbers ai(") 2 IR such thatjai(")� aij � "; ������ Xi2S1(")ai(")� Xi2S2(") ai(")������ � 12 : (2:1)Clearly, any solution to the standard set partition problem is a solution of the "-set partitionproblem for any " > 0. This seems to suggest that the "-set partition problem may be easierthan the standard set partition problem. However, we now show that obtaining a solutionto the "-set partition problem is still NP-hard when " is small.Theorem 2.1 If ai(") 2 IR solves the "-set partition problem and n" < 12 , thenXi2S1(")ai = Xi2S2(")aiProof. The triangle inequality and the second inequality in (2.1) show that������ Xi2S1(") ai � Xi2S2(") ai������ � Xi2S1(") jai(")� aij+ Xi2S2(") jai(")� aij+ 12 :Now use the �rst inequality in (2.1), and recall that S1, S2 is a partition of f1; : : : ; ng toobtain that ������ Xi2S1(")ai � Xi2S2(") ai������ � n" + 12 < 1:The sums in the above inequality add integers, and thus the sums must be integers. Sincethe di�erence between these two sums is less than one, they must be equal. This is thedesired result.An immediate consequence of Theorem 2.1 is that the "-set partition problem is NP-hard. We now show that determining an "-optimal solution to the distance geometry prob-lem in IR is NP-hard. The proof shows that any "-set partition problem can be directlyreduced to a distance geometry problem with n+ 1 atoms in IR.Theorem 2.2 Determining an "-optimal solution to the distance geometry problem in IRis NP-hard.Proof. Given an instance of the "-set partition problem, consider the distance geometryproblem with n+ 1 atoms in IR with�i;i+1 = ai; 1 � i � n; �1;n+1 = 12 :If x1; : : : ; xn+1 is an "-optimal solution to this distance geometry problem, then���jxi � xi+1j � �i;i+1��� � "; jx1 � xn+1j � 12 :4



In particular, if we de�ne ai(") = jxi � xi+1j, then jai(")� aij � ". Now note that����� nXi=1(xi � xi+1)����� = jx1 � xn+1j � 12 (2:2)and that, if S1(") = fi : xi > xi+1g and S2(") = fi : xi � xi+1g, then (2.2) implies that������ Xi2S1(") jxi � xi+1j � Xi2S2(") jxi � xi+1j������ � 12 :Since ai(") = jxi� xi+1j, we have shown that the ai(") solve the "-set partition problem.3 Global SmoothingIn the continuation approach to global optimization, the objective function is graduallytransformed into a smoother function with fewer local minimizers. An optimization al-gorithm is then applied to the transformed function, tracing the minimizers back to theoriginal function. In this section we de�ne the Gaussian transform and describe some ofthe interesting properties of this transformation. The emphasis is on computational con-siderations; motivation and additional details can be found in Wu [28] and Mor�e and Wu[19].The Gaussian transform depends on a parameter � that controls the degree of smoothing.The original function is obtained if � = 0, while smoother functions are obtained as �increases.De�nition 3.1 The Gaussian transform hfi� of a function f : IRn 7! IR ishfi�(x) = 1�n=2�n ZIRn f(y) exp �ky � xk2�2 ! dy: (3:1)The value hfi�(x) is an average of f in a neighborhood of x, with the relative size of thisneighborhood controlled by the parameter �. The size of the neighborhood decreases as �decreases so that when � = 0, the neighborhood is the center x. The Gaussian transformhfi� can also be viewed as the expectation value of f with respect to the Gaussian densityfunction ��(y) = 1�n=2�n exp �kyk2�2 ! :We could have used other density functions in the de�nition of the transform, but Gaussiandensity function has stronger smoothing properties.In principle the computation of the Gaussian transform requires the evaluation of n-dimensional integrals, but for many functions that arise in practice, it is possible to compute5



the Gaussian transform explicitly, or in terms of one-dimensional integrals. In particular,if the function is decomposable, that is, if the function f : IRn 7! IR can be written in theform f(x) = mXk=1 fk(x); fk(x) = nYj=1 fk;j(xj);for some set of functions ffk;jg, where fk;j : IR 7! IR, then a computation shows thathfi�(x) = mXk=10@ nYj=1 hfk;ji�(xj)1A :Thus, computing hfi� for a decomposable function requires the computation of only theone-dimensional integrals for each hfk;ji�. As we shall see in the next section, we avoidcomputing one-dimensional integrals by using special-purpose quadratures.For the distance geometry problem, as well as for other problems in macromolecularconformation, we are interested in transforming a class of functions de�ned in terms of thedistances between pairs of atoms. Given functions hi;j : IRp 7! IR of the distance betweenatoms i and j, we consider the potential functionf(x) = Xi;j2S hi;j(xi � xj); (3:2)where S is some subset of all pairs of atoms, and xi 2 IRp is the position of the i-th atom.In general we are concerned with three-dimensional problems where p = 3.The following result of Mor�e and Wu [19] shows that computing the Gaussian transformof (3.2) requires only the Gaussian transform of hi;j .Theorem 3.2 If f : IRn 7! IR and h : IRp 7! IR are related byf(x) = h(PTx);for some matrix P 2 IRn�p such that PTP = �2I, thenhfi�(x) = hhi��(PTx):Theorem 3.2 reduces the computation of the Gaussian transform of the mapping f , whichis de�ned on IRn, to the computation of the Gaussian transform of h, which is de�ned onIRp. As an application of this result, note thathfi�(x) = Xi;j2Shhi;jip2�(xi � xj)is the Gaussian transform of the potential function de�ned by (3.2). In this case f is de�nedon IRpn, but hi;j is de�ned on IRp. 6



In some application we can compute the Gaussian transform hhi;ji� explicitly. Forexample, in the distance geometry problem (1.1), the function hi;j : IRp 7! IR is of thegeneral form h(x) = �kxk2 � �2�2 :This function is decomposable. Moreover, the Gaussian transform is explicitly given byhhi�(x) = h(x) + [3 + (p� 1)]�2kxk2 + 14p(p+ 2)�4 � p�2�2:For details of this computation see Section 4 of Mor�e and Wu [19].The Gaussian transform of the function de�ned by (1.4) requires a di�erent approachsince the element functions hi;j in (1.4) are not decomposable. The key observation is thatthe element functions hi;j in (1.4) are of the general formh(x) = H(kxk); (3:3)where H : IR 7! IR is given byH(s) = min2(s2 � l2l2 ; 0)+max2(s2 � u2u2 ; 0) : (3:4)We now show that the Gaussian transform of h : IR3 7! IR can be reduced to the calculationof one-dimensional integrals.Theorem 3.3 Given H : IR 7! IR de�ne h : IR3 7! IR by (3.3). If r = kxk thenhhi�(x) = 1�p�r Z 10 sH(s) "exp �(r � s)2�2 !� exp �(r + s)2�2 !#ds: (3:5)Proof. First note that Theorem 3.2 shows, in particular, that hhi�(y) = hhi�(x) for anyvector y such that kyk = kxk. Thus, without loss of generality, we assume that x = (0; 0; r)since this simpli�es the proof. Now note that the de�nition of hhi� implies thathhi�(x) = 1�3p� ZIR3 H(kyk) exp �ky � xk2�2 ! dy:Making a change to spherical coordinatesy = 0BBBB@ s cos �s sin �s cos' 1CCCCA ;and noting that yTx = rs cos' when x = (0; 0; r), we obtain thathhi�(x) = 2�3p� Z 10 Z �0 s2H(s) exp �r2 + s2�2 ! exp��rs cos'�2 � sin'd' ds:7



A computation now shows thatZ �0 exp��rs cos'�2 � sin 'd' = �22rs �exp�2rs�2 �� exp��2rs�2 �� ;and this yields the desired result.Theorem 3.3 can be used to determine the Gaussian transform of h, but the computa-tion can be poorly conditioned when r is small. The following result gives an alternativeexpression that can be used for small r.Corollary 3.4 If H : IR 7! IR and h : IR3 7! IR are as in Theorem 3.3, thenlimx!0 hhi�(x) = 4�3p� Z 10 s2H(s) exp � s2�2! ds:Proof. Since r = kxk, the result follows by taking the limit as r! 0 in (3.5).For the general distance geometry problem the function H is de�ned by (3.4), and thusH is an even function. We now show that Theorem 3.5 can be simpli�ed in this case.Corollary 3.5 If the mapping H in Theorem 3.3 is an even function, thenhhi�(x) = 1�p�r Z +1�1 sH(s) exp �(r � s)2�2 ! ds: (3:6)Proof. By direct computation,hhi�(x) = 1�p�r "Z 10 sH(s) exp �(r � s)2�2 ! ds� Z 10 sH(s) exp �(r + s)2�2 ! ds#= 1�p�r "Z 10 sH(s) exp �(r � s)2�2 ! ds+ Z 0�1 sH(s) exp �(r � s)2�2 ! ds#= 1�p�r Z +1�1 sH(s) exp �(r � s)2�2 ! ds:Interestingly enough, Corollary 3.5 shows that the computation of the Gaussian trans-form of h when H is an even function reduces to the computation of the transform of themapping s 7! sH(s).4 Gauss-Hermite ApproximationWe consider techniques for the approximation of the Gaussian transform of a functionf : IR 7! IR. These techniques are useful for the computation of the Gaussian transform of adecomposable function de�ned on IRn, and for the computation of the Gaussian transform8



of the 3n-dimensional potential function (3.2) when the element functions hi;j are of theform (3.3) with H an even function.The change of variables y = x + �s in (3.1) shows that the Gaussian transform of amapping f : IR 7! IR can be written in the formhfi�(x) = 1p� Z +1�1 f(x+ �s) exp(�s2) ds: (4:1)We can certainly compute hfi�(x) with standard techniques for numerical integration (forexample, an adaptive quadrature), but these techniques usually require a large number offunction evaluations.Another approach used to evaluate hfi�(x) is to approximate f with a linear combinationof functions �i whose Gaussian transforms can be obtained analytically. Iff(x) � mXi=1 �i(x);then the Gaussian transform can be evaluated byhfi�(x) � mXi=1 h�ii�(x):This approach was used in [15] for the Lennard-Jones potential with f�ig a set of Gaussianfunctions. The validity of this approach, however, requires the approximation to be validover a wide range. Moreover, the approximation must be recalculated if the potentialfunction changes.We propose an alternative approach to the approximation of the Gaussian transform(4.1) based on Gaussian quadrature. This approach mixes elements of the numerical inte-gration and function approximation approaches, but does not require the calculation of adi�erent approximation for each application.Given a positive weight function w : IR 7! IR, the Gaussian quadrature formulaZ +1�1 w(s)f(s)ds � mXi=1wif(si); (4:2)is exact for all polynomials of degree less than 2m. The weights wi are the zeros of them-th degree orthogonal polynomial pm with respect to the weight function w; the nodessi are also determined by pm. The w-orthogonal polynomials can be generated by a threeterm recurrence relationship. For the weight function w(s) = exp(�s2) the w-orthogonalpolynomials are the Hermite polynomials, which are generated by the recurrencepk+1(x) = xpk(x)� (12k)pk�1(x); k � 0;with p�1 � 0, and p0 � 1. Details about w-orthogonal polynomials for various weightfunctions are discussed in standard numerical analysis textbooks, for example, Stoer and9



Bulirsch [26] and Kincaid and Cheney [13]. For an advanced treatment of Gaussian quadra-ture, see Stroud and Secrest [27] and Davis and Rabinowitz [5].If we use Gaussian quadrature on the integral in (4.1), we obtain an approximationhfiG;�(x) = 1p� mXi=1wif(x+ �si) (4:3)to the Gaussian transform of f , which we call the Gauss-Hermite transform of f . Thisterminology is appropriate because (4.3) de�nes a discrete transformation that shares manyof the properties of the standard Gaussian transform. In particular, note that the Gauss-Hermite transform coincides with the Gaussian transform if f is a polynomial of degree lessthan 2m.The weights wi and nodes si in the Gauss-Hermite transform are independent of f andcan be found in the literature (for example, Stroud and Secrest [27]) or can be computedwith the gauss subroutine in ORTHOPOL (Gautschi [7]). The computation of the Gauss-Hermite transform requires m function evaluations.We are interested in the use of Gaussian quadratures to approximate integrals of theform (3.6) where the function H : IR 7! IR is given by (3.4). Error bounds for this type ofintegrals can be obtained by using the Peano kernel theorem.Theorem 4.1 Let hfiG;� be the Gauss-Hermite transform of f : IR 7! IR. If f (l) is piecewisecontinuous on IR for some l � 2m, there is a constant �l, independent of f , such thatjhfi�(x)� hfiG;�(x)j � �l�l�(x);where �(x) = �Z +1�1 exp(�s2) ���f (l)(x+ �s)���2 ds�1=2 :Proof. Since Gaussian quadratures are exact for polynomials of degree less than 2m, thePeano kernel theorem (for example, Davis and Rabinowitz [5, Section 4.3]) shows thatjhfi�(x)� hfiG;�(x)j � �l Z +1�1 exp(�s2) ���f (l)(x+ �s)��� ���Kl(s)���ds;where Kl is the Peano kernel. Hence,jhfi�(x)� hfiG;�(x)j � �l�l�(x);where �l = kKlk2 is the weighted L2-norm of the kernel.Theorem 4.1 shows that the Gauss-Hermite transform is likely to be a good approxima-tion to hfi� provided � < 1, but that the accuracy is likely to deteriorate if � > 1. This isnot a serious di�culty because for large � the Gauss-Hermite transform is used to guide analgorithm to a global minimizer, but for small � we work with the original function f .10



We can apply Theorem 4.1 to the mapping f(x) = xH(x), where H : IR 7! IR is givenby (3.4). In this case, f 00 is piecewise continuous, and thus Theorem 4.1 applies with k = 2provided we use m � 1 nodes in the quadrature. Also note that in this case f is a piecewisepolynomial of degree 5, and thus we can expect better results provided we use m � 3 nodes.5 Numerical ResultsWe now present an algorithm for determining a solution to the bounded distance geometryproblem (1.2). Our results are restricted to the problem of obtaining "-optimal solutions tothe distance geometry problem. In particular, we present preliminary numerical results onthe determination of the three-dimensional structure of a 63-atom protein fragment withexperimental data provided by Bruce Hendrickson. All computations were done on theIBM SP parallel system at Argonne National Laboratory with 128 nodes, each node anIBM RS/6000-370 with 128 Mbytes of memory and 125 M
ops of peak performance.We attack the bounded distance geometry problem (1.2) by seeking a global minimizerof the function f(x) = Xi;j2S hi;j(xi � xj); (5:1)where hi;j(x) = min2(kxk2 � l2i;jl2i;j ; 0)+ max2(kxk2 � u2i;ju2i;j ; 0) : (5:2)This function is appropriate for the bounded distance geometry problem because f(x) � 0for all x 2 IRn, and f(x) = 0 if and only if x solves (1.2).The computation of the Gaussian transform of f follows from the results in Section 3.Theorem 3.2 shows that hfi�(x) = Xi;j2Shhi;jip2�(xi � xj):The functions hi;j de�ned by (5.2) are not decomposable, but in this case Corollary 3.5 isapplicable because hi;j(x) = Hi;j (kxk) ; (5:3)where Hi;j(r) = min2(r2 � l2i;jl2i;j ; 0)+ max2(r2 � u2i;ju2i;j ; 0) (5:4)is an even function. Hence, Corollary 3.5 shows thathhi;jip2�(x) = 1�p2� r Z +1�1 sHi;j(s) exp �(r � s)22�2 ! ds= 1p� r Z +1�1 (r +p2�s)Hi;j(r +p2�s) exp��s2� ds;11



where r = kxk. In summary, these computations show thathfi�(x) = Xi;j2S 1p� ri;j Z +1�1 (ri;j +p2�s)Hi;j(ri;j +p2�s) exp��s2� ds;where ri;j = kxi � xjk, is the Gaussian transform of the function de�ned by (5.1), (5.3),and (5.4). This expression for the Gaussian transform is valid for any function de�ned by(5.1) and (5.3), for any even function Hi;j .We approximate the Gaussian transform with the Gauss-Hermite transform as describedin Section 4. For this problem the Gauss-Hermite transform ishfiG;�(x) = Xi;j2S 1p� ri;j nqXk=1wk(ri;j +p2�sk)Hi;j(ri;j +p2�sk); (5:5)where wk and sk are the weights and nodes for the Gaussian quadrature, and ri;j = kxi�xjk.We use a simple version of the global continuation algorithm that uses a prespeci�edset �0 > �1 > : : : > �p = 0 of smoothing parameters.Algorithm GMINChoose a random vector x0 2 IRm�3 and set fg = +1.for k = 0; 1; : : : ; pDetermine x� = locmin (hfiG;�k ; x0).Set x0 = x�.If f(x�) < fg then xg = x� and fg = f(x�).end doWe did not attempt to optimize the choice of smoothing parameters or the starting pointfor the local minimization procedure locmin in GMIN. We chose�k = �0�1� kp� ; 0 � k � p;and the starting point of locmin as the local minimizer found at the previous iteration.We will show that these choices work remarkably well.We tested GMIN with �0 > 0, but we also tested GMIN with a choice of �0 = 0,since for this choice GMIN reduces to the use of locmin on the original function f froma random starting point. A standard multistart method is obtained if GMIN is used froma set of randomly generated starting points with �0 = 0.The choice of local minimization algorithm has to be done with some care becausehfiG;�k is not twice continuously di�erentiable. The Hessian matrix is discontinuous atpoints where the argument of Hi;j coincides with either li;j or ui;j . We cannot expect toavoid these discontinuities, in particular, if li;j or ui;j are close. We used the variable-metric12



Table 5.1: Results for the model problem, " = 0:1�0 m = 64; r = 16 m = 125; r = 25 m = 216; r = 36 m = 343; r = 491 70% 30% 60% 40%0 0% 0% 0% 0%limited-memory code VMLM in MINPACK-2, which is an implementation of the Liu andNocedal [18] algorithm.In our numerical results we consider GMIN to be successful from a starting point x0 ifx� satis�es ���kxi � xjk2 � �2i;j ��� � " �2i;j ; (i; j) 2 S; (5:6)for a given " > 0. This termination test may not be appropriate in practice because smallerdistances tend to be determined more accurately. We used GMIN withl2i;j = �2i;j(1� "); u2i;j = �2i;j(1 + "):In general, " = 0:1 is a reasonable value, but we also tested GMIN with smaller ".We �rst tested the algorithm with the model distance geometry problem constructedby Mor�e and Wu [19]. In this problem the molecule has m = s3 atoms located in thethree-dimensional latticef(i1; i2; i3) : 0 � i1 < s; 0 � i2 < s; 0 � i3 < sgfor some integer s � 1. The problem is to determine the structure of this molecule if we aregiven �i;j 2 S, where S = f(i; j) : ji� jj � rg;and r is an integer between 1 and m.Numerical results for this problem are presented in Table 5.1. We used molecules with(m; r) = (s3; s2), where 4 � s � 7. For each problem, we ran GMIN from 10 randomlychosen starting points with �0 = 1 and p = 20 for continuation. The results show that thecontinuation method found the "-optimal solutions to the problems successfully. On theother hand, the multistart method failed to �nd a solution in all cases.We also tested GMIN with a 63-atom protein fragment. For this problem, 236 pairwisedistances are speci�ed. Hendrickson [11] showed that the molecule with this set of distancedata is nearly rigid and di�cult to determine. Our numerical results con�rm this �nding.We ran GMIN from 100 starting points for " = 0:01; 0:02; 0:04; 0:06; 0:08; 0:1. In allcases we set �0 = 1 and p = 20 for continuation. The results from these experiments,13
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